316 research outputs found

    On the Graceful Game

    Get PDF
    A graceful labeling of a graph GG with mm edges consists of labeling the vertices of GG with distinct integers from 00 to mm such that, when each edge is assigned as induced label the absolute difference of the labels of its endpoints, all induced edge labels are distinct. Rosa established two well known conjectures: all trees are graceful (1966) and all triangular cacti are graceful (1988). In order to contribute to both conjectures we study graceful labelings in the context of graph games. The Graceful game was introduced by Tuza in 2017 as a two-players game on a connected graph in which the players Alice and Bob take turns labeling the vertices with distinct integers from 0 to mm. Alice's goal is to gracefully label the graph as Bob's goal is to prevent it from happening. In this work, we study winning strategies for Alice and Bob in complete graphs, paths, cycles, complete bipartite graphs, caterpillars, prisms, wheels, helms, webs, gear graphs, hypercubes and some powers of paths

    On decision and optimization (k,l)-graph sandwich problems

    Get PDF
    AbstractA graph G is (k,l) if its vertex set can be partitioned into at most k independent sets and l cliques. The (k,l)-Graph Sandwich Problem asks, given two graphs G1=(V,E1) and G2=(V,E2), whether there exists a graph G=(V,E) such that E1⊆E⊆E2 and G is (k,l). In this paper, we prove that the (k,l)-Graph Sandwich Problem is NP-complete for the cases k=1 and l=2; k=2 and l=1; or k=l=2. This completely classifies the complexity of the (k,l)-Graph Sandwich Problem as follows: the problem is NP-complete, if k+l>2; the problem is polynomial otherwise. We consider the degree Δ constraint subproblem and completely classify the problem as follows: the problem is polynomial, for k⩽2 or Δ⩽3; the problem is NP-complete otherwise. In addition, we propose two optimization versions of graph sandwich problem for a property Π: MAX-Π-GSP and MIN-Π-GSP. We prove that MIN-(2,1)-GSP is a Max-SNP-hard problem, i.e., there is a positive constant ε, such that the existence of an ε-approximative algorithm for MIN-(2,1)-GSP implies P=NP
    • …
    corecore